Rapid and automated multidimensional fluorescence microscopy profiling of 3D human breast cultures.
نویسندگان
چکیده
Three-dimensional (3D) tissue culture provides a physiologically relevant microenvironment for distinguishing malignant from non-malignant breast cell phenotypes. 3D culture assays can also be used to test novel cancer therapies and predict a differential response to radiation between normal and malignant cells in vivo. However, biological measurements in such complex models are difficult to quantify and current approaches do not allow for in-depth multifaceted assessment of individual colonies or unique sub-populations within the entire culture. This is in part due to the limitations of imaging at a range of depths in 3D culture resulting from optical aberrations and intensity attenuation. Here, we address these limitations by combining sample smearing techniques with high-throughput 2D imaging algorithms to accurately and rapidly quantify imaging features acquired from 3D cultures. Multiple high resolution imaging features especially designed to characterize 3D cultures show that non-malignant human breast cells surviving large doses of ionizing radiation acquire a "swelled acinar" phenotype with fewer and larger nuclei, loss of cell connectivity and diffused basement membrane. When integrating these imaging features into hierarchical clustering classification, we could also identify subpopulations of phenotypes from individual human tumor colonies treated with ionizing radiation or/and integrin inhibitors. Such tools have therefore the potential to further characterize cell culture populations after cancer treatment and identify novel phenotypes of resistance.
منابع مشابه
Automated Analysis of the Mitotic Phases of Human Cells in 3D Fluorescence Microscopy Image Sequences
The evaluation of fluorescence microscopy images acquired in high-throughput cell phenotype screens constitutes a substantial bottleneck and motivates the development of automated image analysis methods. Here we introduce a computational scheme to process 3D multi-cell time-lapse images as they are produced in large-scale RNAi experiments. We describe an approach to automatically segment, track...
متن کاملImaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy
The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of su...
متن کاملCellular Imaging at the Nanoscale: Poster Abstract Booklet
#1: Wavelength and pH Dependent Detection of Homocysteine #2: Synthesis and Characterization of Photoswitchable Fluorophores for Multispectral Super Resolution Microscopy #3: Ligand Deployment and Sensing in a Large, 3‐D Extracellular Space #4: Multi‐photon Excitation and Characterization of Novel Fluorophores for Cellular Imaging #5: New Fluorescent Probes for Visualizing Autophagy #6: Fr...
متن کاملUltra High Content Image Analysis and Phenotype Profiling of 3D Cultured Micro-Tissues
In many situations, 3D cell cultures mimic the natural organization of tissues more closely than 2D cultures. Conventional methods for phenotyping such 3D cultures use either single or multiple simple parameters based on morphology and fluorescence staining intensity. However, due to their simplicity many details are not taken into account which limits system-level study of phenotype characteri...
متن کاملContextual automated 3D analysis of subcellular organelles adapted to high-content screening.
Advances in automated imaging microscopy allow fast acquisitions of multidimensional biological samples. Those microscopes open new possibilities for analyzing subcellular structures and spatial cellular arrangements. In this article, the authors describe a 3D image analysis framework adapted to medium-throughput screening. Upon adaptive and regularized segmentation, followed by precise 3D reco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrative biology : quantitative biosciences from nano to macro
دوره 5 4 شماره
صفحات -
تاریخ انتشار 2013